SOLUTION In order to apply Equation 2, we first rewrite the function by multiplying and dividing by 7:

Note that $\sin 7x \neq 7 \sin x$.

$$\frac{\sin 7x}{4x} = \frac{7}{4} \left(\frac{\sin 7x}{7x} \right)$$

Notice that as $x \to 0$, we have $7x \to 0$, and so, by Equation 2 with $\theta = 7x$,

$$\lim_{x \to 0} \frac{\sin 7x}{7x} = \lim_{7x \to 0} \frac{\sin(7x)}{7x} = 1$$

Thus

$$\lim_{x \to 0} \frac{\sin 7x}{4x} = \lim_{x \to 0} \frac{7}{4} \left(\frac{\sin 7x}{7x} \right)$$
$$= \frac{7}{4} \lim_{x \to 0} \frac{\sin 7x}{7x} = \frac{7}{4} \cdot 1 = \frac{7}{4}$$

EXAMPLE 5 \square Calculate $\lim_{x\to 0} x \cot x$.

SOLUTION Here we divide numerator and denominator by x:

$$\lim_{x \to 0} x \cot x = \lim_{x \to 0} \frac{x \cos x}{\sin x}$$

$$= \lim_{x \to 0} \frac{\cos x}{\sin x} = \frac{\lim_{x \to 0} \cos x}{\lim_{x \to 0} \frac{\sin x}{x}}$$

$$= \frac{\cos 0}{1} \qquad \text{(by the continuity of cosine and Equation 2)}$$

$$= 1$$

Exercises

1–16 □ Differentiate.

Resources / Module 4 / Trigonometric Models / Derivatives of Trig

Functions and Quiz

1.
$$f(x) = x - 3 \sin x$$
2. $f(x) = x \sin x$
3. $y = \sin x + \cos x$
4. $y = \cos x - 2 \tan x$
5. $g(t) = t^3 \cos t$
6. $g(t) = 4 \sec t + \tan t$
7. $h(\theta) = \csc \theta + e^{\theta} \cot \theta$
8. $y = e^x \sin x$
10. $y = \frac{\sin x}{1 + \cos x}$

$$2. \ f(x) = x \sin x$$

$$\mathbf{3}. \quad y = \sin x + \cos x$$

4.
$$y = \cos x - 2 \tan x$$

$$\int_{0}^{\infty} g(t) = t^{3} \cos t$$

$$6. \ g(t) = 4 \sec t + \tan t$$

$$h(\theta) = \csc \theta + e^{\theta}$$

$$8. \ \ y = e^x \sin x$$

$$\mathbf{9.}\mathbf{y} = \frac{\tan x}{x}$$

$$10. \ \ y = \frac{\sin x}{1 + \cos x}$$

11.
$$y = \frac{x}{\sin x + \cos x}$$
12. $y = \frac{\tan x - 1}{\sec x}$
13. $y = \frac{\sin x}{x^2}$
14. $y = \tan \theta (\sin \theta - 1)$
15. $y = \csc x \cot x$
16. $y = x \sin x \cos x$

12.
$$y = \frac{\tan x - 1}{\sec x}$$

$$y = \frac{\sin x}{x^2}$$

14.
$$y = \tan \theta (\sin \theta + \cos \theta)$$

$$(15.) y = \csc x \cot x$$

$$16. \quad y = x \sin x \cos x$$

17. Prove that
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$
.

18. Prove that
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
.

19. Prove that
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
.

20. Prove, using the definition of derivative, that if
$$f(x) = \cos x$$
, then $f'(x) = -\sin x$.

21-24
Find an equation of the tangent line to the given curve at the specified point.

21.
$$y = \tan x$$
, $(\pi/4, 1)$

(22.)
$$y = 2 \sin x$$
, $(\pi/6, 1)$

$$(23) y = x + \cos x, \quad (0, 1)$$

21)
$$y = \tan x$$
, $(\pi/4, 1)$ 22) $y = 2 \sin x$, $(\pi/6, 1)$ 23) $y = x + \cos x$, $(0, 1)$ 24) $y = \frac{1}{\sin x + \cos x}$, $(0, 1)$

(a) Find an equation of the tangent line to the curve $y = x \cos x$ at the point $(\pi, -\pi)$.

- (b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.
- (a) Find an equation of the tangent line to the curve $y = \sec x - 2\cos x$ at the point $(\pi/3, 1)$.
- Æ
- (b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.
- - **27.** (a) If $f(x) = 2x + \cot x$, find f'(x).
- (b) Check to see that your answer to part (a) is reasonable by graphing both f and f' for $0 < x < \pi$.
- **28.** (a) If $f(x) = \sqrt{x} \sin x$, find f'(x).

- (b) Check to see that your answer to part (a) is reasonable by graphing both f and f' for $0 \le x \le 2\pi$.
- **29.** For what values of x does the graph of $f(x) = x + 2 \sin x$ have a horizontal tangent?
- Find the points on the curve $y = (\cos x)/(2 + \sin x)$ at which the tangent is horizontal.
- 31. A mass on a spring vibrates horizontally on a smooth level surface (see the figure). Its equation of motion is $x(t) = 8 \sin t$, where t is in seconds and x in centimeters.
 - (a) Find the velocity at time t.
 - (b) Find the position and velocity of the mass at time $t = 2\pi/3$. In what direction is it moving at that time?

- **32.** An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it vibrates vertically. The equation of motion is $s = 2 \cos t + 3 \sin t$, $t \ge 0$, where s is measured in centimeters and t in seconds. (We take the positive direction to be downward.)
 - (a) Find the velocity at time t.
 - (b) Graph the velocity and position functions.
 - When does the mass pass through the equilibrium position for the first time?
 - (d) How far from its equilibrium position does the mass travel?
 - (e) When is the speed the greatest?

A ladder 10 ft long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when $\theta = \pi/3$?

34. An object with weight W is dragged along a horizontal plane by a force acting along a rope attached to the object. If the rope makes an angle θ with the plane, then the magnitude of the force is

$$F = \frac{\mu W}{\mu \sin \theta + \cos \theta}$$

where μ is a constant called the *coefficient of friction*.

- (a) Find the rate of change of F with respect to θ .
- (b) When is this rate of change equal to 0?
- (c) If W = 50 lb and $\mu = 0.6$, draw the graph of F as a function of θ and use it to locate the value of θ for which $dF/d\theta = 0$. Is the value consistent with your answer to part (b)?
- 35-44 □ Find the limit.

$$\lim_{t\to 0} \frac{\sin 5t}{t}$$

$$36. \lim_{t\to 0} \frac{\sin 8t}{\sin 9t}$$

$$\mathbf{38.} \ \lim_{\theta \to 0} \frac{\cos \theta - 1}{\sin \theta}$$

$$\mathbf{39.} \lim_{\theta \to 0} \frac{\sin^2 \theta}{\theta}$$

40.
$$\lim_{x\to 0} \frac{\tan x}{4x}$$

$$\underbrace{\mathbf{41.}}_{x \to 0} \lim_{x \to 0} \frac{\cot 2x}{\csc x}$$

42.
$$\lim_{x \to \pi/4} \frac{\sin x - \cos x}{\cos 2x}$$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta} \quad (20)$$

$$\underbrace{\left(\mathbf{43}\right)}_{\theta \to 0} \lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta} \quad \left(\mathcal{C} \mathbf{0} \right)^{\left(\frac{\theta}{\theta}\right)^{\frac{1}{2}}}$$

44.
$$\lim_{x \to 1} \frac{\sin(x-1)}{x^2 + x - 2}$$

45. Differentiate each trigonometric identity to obtain a new (or familiar) identity.

(a)
$$\tan x = \frac{\sin x}{\cos x}$$

(b)
$$\sec x = \frac{1}{\cos x}$$

(c)
$$\sin x + \cos x = \frac{1 + \cot x}{\csc x}$$

A semicircle with diameter PQ sits on an isosceles triangle PQR to form a region shaped like an ice-cream cone, as shown